什么是实数(实数是什么?)
实数是什么意思
实数是有理数和无理数的总称。
实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括无限循环小数、有限小数、整数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”--意义是“实在的数”。
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数 *** 通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。
实数的高级性质:
实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线 *** 证明。实际上,实数集的势为 2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。
实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的 *** ,这就是连续统假设。该假设不能被证明是否正确,这是因为它和 *** 论的公理不相关。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
实数是什么?
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
扩展资料:
一、发展历史
什么是实数?
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数,实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的 *** 则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
什么是实数
实数,是有理数和无理数的总称,前者如 3、-4,2/3;后者如π、√2等。
实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。但仅仅以枚举的方式不能描述实数的全体。实数和虚数共同构成复数。
所有实数的 *** 则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
扩展资料性质:
在实数域内,可实现的基本运算有加、减、乘、除、乘方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数;只有非负实数才能开偶次方,其结果还是实数。
所有非负实数的平方根属于 R,但这对负数不成立。这表明 R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于 R。这两个性质使 R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。
本网站文章仅供交流学习 ,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除. 邮箱jdapk@qq.com