伦琴几月几号(伦琴全名)
1. 伦琴全名
威廉·康拉德·伦 琴 William Conrad Rontgen 这是全名 呵呵 发现x射线那个
2. 伦琴 gy
1. 放射性活度(radioactivity)简称活度,SI单位是“S-1”,SI单位专名是贝可[勒尔](Becquerel),符号为Bq。1Bq=1次衰变/秒。暂时与SI并用的专用单位名称是居里,符号为Ci。1Ci=3.7*10^10Bq 或1Bq=1s^-1=2.703*10^-11Ci。可用克镭当量来表示 γ 放射源的相对放射性活度。1 克镭当量表示一个 γ 放射源的 γ 射线对空气的电离作用和 1 克的标准镭源(置于壁厚为0.5毫米的铂铱合金管内,且与其子体达到平衡的1克镭)相当。
单位质量或单位体积的放射性物质的放射性活度称为放射性比度,或比放射性(specific radioactivity)。
2. 照射量(exposure dose)X=dQ/dm,其中 dQ 的值是在质量为 dm 空气中,由光子释放的全部电子(负电子和正电子)在空气中完全被阻止时所产生的离子总电荷的绝对量。单位:库仑·千克-1 [C/kg]。暂时与SI并用的照射量的专用单位名称是伦琴(Roentgen),符号为R,目前尚无SI单位专名,与SI单位的关系为1R=2.58*10^-4 C/kg。
伦琴的定义是:在1R X 或 γ 射线照射下,在 0.001293g(0℃ 760mm 汞柱大气压力下 1cm^3 干燥空气的质量)空气中所产生的次级电子在空气形成总电荷量为 1 静电单位的正离子或负离子。照射量只对空气而言,仅适用于 X 或 γ 射线。3. 吸收剂量(absorbed dose)D=dε/dm,其中 dε 是致电离辐射给予质量为dm 的受照物质的平均能量。SI单位是焦耳·千克-1 [J/kg],SI单位专名是戈[瑞](gray),符号Gy。暂时与SI并用的专用单位名称是拉德,符号为rad。1Gy=1J/kg=100rad,或 1rad=10^-2J/kg=10^-2Gy。
照射量 X 与吸收剂量 D 是两个意义完全不同的辐射量。照射量只能作为 X 或 γ 射线辐射场的量度,描述电离辐射在空气中的电离本领;而吸收剂量则可以用于任何类型的电离辐射,反映被照介质吸收辐射能量的程度。但是,在两个不同量之间,在一定条件下相互可以换算。对于同种类、同能量的射线和同一种被照物质来说,吸收剂量是与照射量成正比的。由于 X 或 γ 射线在空气中产生一对离子的平均能量约为32.5eV,所以 1R 的 X 或 γ 射线在空气中的吸收剂量约为 0.838rad;而在软组织中的吸收剂量约为 0.931rad。4. 当量剂量(equivalent dose)H=DQN,其中,D是吸收剂量;Q是品质因子;N是其它修正系数的乘积。目前指定N值为1。相同的吸收剂量未必产生同样程度的生物效应,因为生物效应受到辐射类型、剂量与剂量率大小、照射条件、生物种类和个体生理差异等因素的影响。
为了比较不同类型辐射引起的有害效应,在辐射防护中引进了一些系数,当吸收剂量乘上这些修正系数后,就可以用同一尺度来比较不同类型辐射照射所造成的生物效应的严重程度或产生机率。当量剂量只限于防护中应用。
3. 伦琴的一生
为了科学事业呕心沥血的科学大家们为了科学研究牺牲了个人的休息时间,牺牲了与家人团聚的时间,牺牲了为父母尽孝的时间,牺牲了陪伴妻子,孩子成长生活的时间,牺牲了国外舒适的生活环境,优厚的物质待遇,等等。科学大家们牺牲的不仅仅是自己更多的是朋友,亲人。舍小家为国家,令人敬佩。
(1)居里夫人
先后获得诺贝尔物理奖和化学奖的居里夫人,是一位法国籍波兰科学家。她研究放射性现象,发现了一系列新元素,包括镭和钋。几十年来,居里夫人由于长期从事放射性物质的研究工作,加上恶劣的实验环境和对身体保护的不够严格,时常受到放射性元素的侵袭,使她的血液渐渐受到了破坏,患上白血病。她还患有肺病、眼病、胆病、肾病,甚至患过神经错乱症。在居里夫人看来,科学研究要比她本身的健康更重要。她曾为了能参加世界物理学大会,请求医生延期施行肾脏手术;她曾带病回国参加镭研究所的开幕典礼。她曾忍受着眼睛失明的恐惧,顽强地进行科学研究。直到她生命的最后一息,由于恶性贫血、高烧不退,躺在床上的时候,仍然要求她的女儿向她报告实验室里的工作情况,替她校对她写的《放射性》著作。居里夫人1934年7月4日不治而亡,她把她的一生完全献给了她所挚爱的科学事业。
(2)路易斯·斯洛汀
路易斯·斯洛汀出生于加拿大的斯洛汀,是加拿大的物理家和化学家。1936年,他获得物理化学博士学位后,作为一个研究助理参加了一个研究项目的工作,主要帮助设计一个回旋加速器。1942年,他应邀参加了美国的曼哈顿计划(研制世界上第一颗核弹)。1946年5月21日,在试验中,他不小心将一块半球状的铍掉落到另外一块之上,并迅速引发了临界反应(球体的核心是钚)。与他处于同一间实验室的科学家们目睹了空气电离所发出的“蓝色光辉”并感到一阵“热浪”袭来。斯洛汀迅速地做出了反应,然后冲出了实验室。他急忙住进医院,但无济于事,他还是在9天之后死去。在意外发生的那一刻,斯洛汀所遭受的辐射相当于距原子弹爆炸中心4800英尺处的辐射量。在这次意外之后,洛斯阿拉莫斯实验室马上停止了所有的手动装配工作。
(3)托马斯.米基利
托马斯.米基利是一位美国化学家,发明了加铅汽油和氯氟烃。虽然在世时也得到了很多赞誉,但真正使米基利成名的是由于他的发明他被称为“地球历史上对大气影响最大的个体生物”以及“历史上杀戮最多的个体”。他后来染上了脊髓灰质炎和铅中毒瘫痪在床。为此,他发明了一套绳索滑轮系统以便于起床。后来在他55岁的时候,被滑轮绳索缠住,窒息而死。他的滑轮发明和含铅汽油都促成了他的死亡,称得上自己“玩”死的典型。
(4)博格丹诺夫
博格丹诺夫是俄国医师、哲学家、经济学家、科幻小说作家,同时也是一位革命家。在1904年—1906年,他出版了三册的哲学论文:经验批评主义。在1909年 ,他出版了一本尖刻的评书,题为唯物主义和经验批评主义。从1913年到1922年 ,他沉浸在一个漫长的哲学论文的写作中——组织形态学,包括世界组织科学预期的许多基本理念、系统的分析、控制论的探讨。在1918年,波丹诺夫成为莫斯科大学的经济学教授,担任新建立的社会主义社会科学院的主任。在1924年,他开始进行输血法的试验,很可能是为了寻求保持年轻的方法,他在自己身上做了11次输血试验,声称他已经减缓了秃顶的速度并且视力也有了明显提高。很不幸的是,在当时,输血法还是一项相当年轻的科学,博格丹诺夫在输血的时候也并没有测试血液的质量或者献血者的健康状况。在1928年,博格丹诺夫接受了被疟原虫和结核杆菌感染的血液,因此不久之后便死去。
(5)伊丽莎白·福列希曼·阿夏姆
伊丽莎白·福列希曼·阿夏姆在母亲死后不久,便嫁给了医生伍尔夫。伍尔夫对威廉·伦琴的新发现X光产生了浓厚的兴趣。他的妻子伊丽莎白对X光也很感兴趣。伊丽莎白辞掉了她的图书管理员的工作后开始从事电子科学的研究。她买来了一台X光机,放置在她丈夫的办公室里——这也是旧金山的第一台X光机。伊丽莎白花费了大量的时间操作X光机。她不但没有采取任何保护措施,甚至有时候直接把X光对准自己。不幸的是她并没有意识到长期暴露在X光下的后果。1905年,伊丽莎白死于严重的癌症,癌细胞已经扩展到了全身。
(6)帕里·托马斯
帕里·托马斯是一个威尔士赛车手和工程师,他一直梦想着打破马尔柯姆·坎贝尔创下的速度纪录,于是他开始尝试造一部汽车来实现自己的梦想。最终汽车造了出来,他给汽车取名芭布斯,这辆汽车托马斯做了很多改进,他将连接轮子和发动机的链子露在汽车的外面。1926年4月27日,帕里·托马斯打破了马尔柯姆·坎贝尔创下的速度纪录,在第二天他又把速度提高到了每小时170千米。这个纪录到第二年又被马尔柯姆·坎贝尔打破。帕里·托马斯在重新夺回纪录时车链突然断开,其中一部分击中了他自己,致使他当场死亡。
(7) 汉弗莱·戴维
汉弗莱·戴维是美国化学家,1778年12月17日出生在美国一个贫穷的家庭里。他的父亲早逝,母亲靠父亲生前的一个小小的农庄,无法养活5个孩子,于是卖掉农庄,全家搬到彭赞斯,在母亲的养父汤金的帮助下生活。汉弗莱·戴维一生在化学上最大的贡献就是开辟了用电解法制取金属元素的新途径:也就是用伏打电池来研究电的化学效应,电解了以前不能分解的苛性碱,制得了钾和钠,后来又制得了钡、镁、钙、锶等碱土金属。之后他用强还原性的钾制取了硼;对气体,也进行了深入的研究;发现了有麻醉性、刺激性的“笑气”氧化亚氮,这种物质对科学发展起到了很大的作用。他用实验证明了氯是一种化学元素,提出酸中不可缺少的元素是氢,而不是氧,修正了拉瓦锡的“酸里必须含氧”的观点,他发明了煤矿安全灯,造福于矿下工作者。当他深入化学领域时,他有一个习惯,吸入各种气体。这个坏习惯,直接导致他发现麻醉性能的一氧化二氮。但不幸的是,这相同的习惯,导致他几乎自杀在许多场合,这期间一个三氯化氮爆炸使他永久损坏了眼睛。频繁中毒最终留给他一个无效的20年生命。 (8)李林塔尔
李林塔尔为德国工程师和滑翔飞行家,世界航空先驱者之一。他最早设计和制造出实用的滑翔机,人称“滑翔机之父”。很多国家的报纸和杂志都刊登过李林塔尔的滑翔照片,他使人类长期以来发明一种飞翔工具的梦想成真。但探索总是要付出代价的,1896年4月9日,李林塔尔操纵他的滑翔机时遇一股强劲的风,滑翔机失速栽向地面,滑翔机摔毁了,李林塔尔也受了致命的重伤——脊椎断裂,第二天死亡。在弥留之际,他对弟弟古斯塔夫说:“总是要有人牺牲的。”
(9)卡尔·威尔海姆·舍勒
卡尔·威尔海姆·舍勒是瑞典著名化学家,氧气的发现人之一,同时对氯化氢、一氧化碳、二氧化碳、二氧化氮等多种气体都有深入的研究。例如:氧(虽然约瑟夫·普莱斯利在他之前发表了这一发现)、钼、钨、锰和氯。他也发现了一种与巴氏消毒法很相似的消毒方法。舍勒1775年当选为瑞典科学院成员,他的工作给人类带来巨大的利益,他一生尽瘁于化学事业,他认为化学“这种尊贵的学问,乃是奋斗的目标”。舍勒有一个奇怪的习惯,他会亲自“品尝”一下他所发现的化学元素。令人庆幸的是他没有死于氰化氢中毒。可他不会总有这么好的运气:从他死亡的症状来看,他似乎死于汞中毒。舍勒逝世后,瑞典人们十分怀念他,在他150和200周年诞辰时,人们给他举行了隆重的纪念会,这种会议也成了化学家们进行学术交流的场所。舍勒的遗作,大部分都整理出版了。在科平城和斯得哥尔摩都为他建立了纪念塑像,他的墓地前立有一块朴素的方形墓碑,碑上的浮雕是一位健美男子,高擎着一把燃烧的火炬。 (10)让·弗朗索瓦·德罗齐耶
让·弗朗索瓦·德罗齐耶是法国的物理和化学老师。1781年12月11日,他在巴黎的马莱季开设了一家博物馆。1783年,他目睹了世界上一次热气球飞行,这次经历使他燃起了飞行的热望。1783年9月19日,他曾用羊、鸡和鸭子做过飞行试验。在试验成功之后让·弗朗索瓦进行了他第一次载人热气球飞行,他乘热气球飞到了海拔3000英尺的高空中。让·弗朗索瓦没有停滞不前,而是计划了一次穿越英吉利海峡的飞行,但不幸的是,这成为了他最后的一次飞行。当热气球上升到海拔1500米的高空时,气球开始漏气并快速坠落,最终导致了让·弗朗索瓦的死亡。在他死后的第八天,他的未婚妻也死了,很可能是自杀。
4. 伦琴资料
伦琴射线(X射线)的产生原理:
加速后的电子撞击金属靶,电子在打进金属的过程中急剧减速,有加速的带电粒子会辐射电磁波,如果电子能量很大,比如上万电子伏,就可以产生x射线,这是目前实验室和工厂,医院等地方用的产生x射线的方法。
原子的内层电子跃迁也可以产生x射线,量子力学的理论,电子从高能级往低能级跃迁时候会辐射光子,如果能级的能量差比较大,就可以发出x射线波段的光子。
5. 伦琴是谁
1895年11月8日,伦琴为了将阴极射线引出玻璃管外进行研究,用了较高的放电电压且是在黑暗的实验室内进行研究,无意间发现了X射线。
伦琴因X射线的发现于1901年获得了第一届诺贝尔物理学奖。但伦琴没有为X射线的发现申请任何专利,他认为那是属于全人类的,理应让公众免费获得。
6. 伦琴 msv
是电离辐射。
X线是电磁辐射谱中的一部分,属于电离辐射,其波长介于紫外线和γ射线之间,是具有电磁波和光量子双重特性的一种特殊物质。就其本质而言,X线与可见光、红外线、紫外线、γ射线完全相同,都是电磁波。
X射线是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是波长介于紫外线和γ射线 之间的电磁波。其波长很短约介于0.01~100埃之间。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。
电离辐射,是能使受作用物质发生电离现象的辐射,即波长小于100mm的电磁辐射,辐射剂量大小是以国际计量单位mSv(毫西弗)来衡量。
7. 伦琴介绍
设立于1951年,它是由伦琴的出生地———德国雷姆沙伊德市颁发的,每年颁奖一次,以奖励在X射线领域中取得重要研究...
本网站文章仅供交流学习 ,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除. 邮箱jdapk@qq.com