贝叶斯定理(贝叶斯定理(Bayes' theorem))
贝叶斯定理的定理定义
贝叶斯定理定义如下:
1)该定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1763)曾提出计算条件概率的公式用来解决如下一类问题:
假设H[1],H[2]…,H[n]互斥且构成一个完全事件,已知它们的概率P(H[i]),i=1,2,…,n,现观察到某事件A与H[,1],H[,2]…,H[,n]相伴随机出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。
贝叶斯公式(发表于1763年)为:
P(H[i]/A)=P(H[i])*P(A│H[i])/{P(H[1])*P(A│H[1]) +P(H[2])*P(A│H[2])+…+P(H[n])*P(A│H[n])}
2)意义
贝叶斯推理的问题是条件概率推理问题,这一领域的探讨对揭示人们对概率信息的认知加工过程与规律、指导人们进行有效的学习和判断决策都具有十分重要的理论意义和实践意义。
3)应用:贝叶斯定理可用于投资决策分析,具体步骤如下:
1 列出在已知项目B条件下项目A的发生概率,即将P(A│B)转换为 P(B│A);
2 绘制树型图;
3 求各状态结点的期望收益值,并将结果填入树型图;
4 根据对树型图的分析,进行投资项目决策。
贝叶斯定理(Bayes' theorem)
贝叶斯定理是18世纪英国数学家托马斯·贝叶斯(Thomas Bayes)提出得重要概率论理论。以下摘一段 *** 上的简介:
所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如“假设袋子里面有 N 个白球,M 个黑球,你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测”。这个问题,就是所谓的逆向概率问题。
定义
贝叶斯定理(Bayes' theorem)是关于随机事件 A 和 B 的条件概率:
其中P(A|B)是在 B 发生的情况下 A 发生的可能性。
什么叫做贝叶斯定理?
贝叶斯定理:
贝叶斯定理(Bayes' theorem)是概率论中的一个结论,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。
什么是贝叶斯定理?请简述其公式?
贝叶斯公式的数学表示:
其中P(A|B)是在B发生的情况下A发生的可能性。 其中 , ,.. ...... 为完备事件组,即其预测的是B事件已经发生的情况下,A事件发生的概率。
对于P(A)和P(A|B)来说,前者表示在没有任何前提的情况下,去预测A事件发生的概率,而后者可以认为是有了一个与之有关的事件发生,在这个事件的推动下,去预测A事件发生的概率。
通俗的理解下,假设A1,A2,.......代表患者患上不同种类的病,此时对患者的各项指标进行检查,发现有一项指标超标,即B事件发生,问患者是不是得了A1这种病。或者就是患上A1这种病的概率。
贝叶斯定律
贝叶斯定律:假设H[,1],H[,2]…互斥且构成一个完全事件,已知它们的概率P(H[,i],i=1,2,…,现观察到某事件A与H[,1],H[,2]…相伴随而出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。
心理学研究中常被引用的例子
参加常规检查的40岁的妇女患乳腺癌的概率是1%。如果一个妇女有乳腺癌,则她有80%的概率将接受早期胸部肿瘤X射线检查。
如果一个妇女没有患乳腺癌,也有9.6%的概率将接受早期胸部肿瘤X射线测定法检查。在这一年龄群的常规检查中某妇女接受了早期胸部肿瘤X射线测定法检查。问她实际患乳腺癌的概率是多大?设H[,1]=乳腺癌,H[,2]=非乳腺癌。
A=早期胸部肿瘤X射线检查(以下简称“X射线检查”),已知P(H[,1])=1%,P(H[,2])=99%,P(A/H[,1])=80%,P(A/H[,2])=9.6%,求P(H[,1]/A)。根据贝叶斯定理,P(H[,1]/A)=(1%)(80%)/[(1%)(80%)+(99%)(9.6%)]=0.078。
心理学家所关心的是,一个不懂贝叶斯原理的人对上述问题进行直觉推理时的情形是怎样的,并将他们的判断结果与贝叶斯公式计算的结果做比较来研究推理过程的规律。因此有关这类问题的推理被称为贝叶斯推理。
贝叶斯
出生于伦敦,毕业于爱丁堡大学,英国数学家。贝叶斯做过神甫,1742年成为英国皇家学会会员,1761年4月7日逝世,贝叶斯在数学方面主要研究概率论,他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论。
贝叶斯公式的通俗解释
贝叶斯法则通俗解释是:通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯法则就是这种关系的陈述。
贝叶斯公式
贝叶斯定理由英国数学家贝叶斯发展,用来描述两个条件概率之间的关系,比如P(A|B)和P(B|A)。按照乘法法则,可以立刻导出:P(A∩B)=P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(A|B)=P(B|A)*P(A)/P(B)。
定义贝叶斯的统计学中有一个基本的工具叫贝叶斯公式、也称为贝叶斯法则,尽管它是一个数学公式,但其原理毋需数字也可明了。如果你看到一个人总是做一些好事,则那个人多半会是一个好人。
这就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。
托马斯·贝叶斯介绍托马斯·贝叶斯(ThomasBayes),英国神学家、数学家、数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫,1742年成为英国皇家学会会员。贝叶斯曾是对概率论与统计的早期发展有重大影响的两位人物之一。
贝叶斯定理
引入:
定义: (英语:Bayes' theorem)是概率论中的一个定理,描述在已知一些条件下,某事件的发生几率。比如,如果已知某癌症与寿命有关,使用贝叶斯定理则可以透过得知某人年龄,来更加准确地计算出他罹患癌症的几率。———— wiki解释
贝叶斯公式:
事件B发生的条件下,事件A发生的概率为:
事件A发生的条件下,事件B发生的概率为:
由此可得:
得贝叶斯公式如下:
贝叶斯公式:
上式可以理解为:
所以贝叶斯的底层思想为:
如果掌握了一个事情的全部信息,就可以计算出一个客观概率(古典概率、正向概率),但是绝大多数决策面临的信息都是不全的,在有限信息的条件下,尽可能预测一个好的结果,也就是在主观判断的基础上,可以 先估计一个值(先验概率),然后根据观察的新信息不断修正(可能性函数) 。
问题 :有两个一模一样的碗,1号碗里有30个巧克力和10个水果糖,2号碗里有20个巧克力和20个水果糖。然后把碗盖住。随机选择一个碗,从里面摸出一个巧克力。 这颗巧克力来自1号碗的概率是多少?
求解问题:
已知信息:
应用贝叶斯:
问题 :假设艾滋病的发病率是0.001,即1000人中会有1个人得病。现有一种试剂可以检验患者是否得病,它的准确率是0.99,即在患者确实得病的情况下,它有99%的可能呈现阳性。它的误报率是5%,即在患者没有得病的情况下,它有5%的可能呈现阳性。 现有一个病人的检验结果为阳性,请问他确实得病的可能性有多大?
求解问题:
已知信息:
应用贝叶斯定理:
造成这么不靠谱的误诊的原因,是我们无差别地给一大群人做筛查,而不论测量准确率有多高,因为正常人的数目远大于实际的患者,所以误测造成的干扰就非常大了。 根据贝叶斯定理,我们知道提高先验概率,可以有效的提高后验概率。 所以解决的办法倒也很简单,就是先锁定可疑的样本,比如10000人中检查出现问题的那10个人,再独立重复检测一次,因为正常人连续两次体检都出现误测的概率极低,这时筛选出真正患者的准确率就很高了,这也是为什么许多疾病的检测,往往还要送交独立机构多次检查的原因。
问题 :最初的垃圾邮件过滤是靠静态关键词加一些判断条件来过滤,效果不好,漏网之鱼多,冤枉的也不少。2002年,Paul Graham提出 使用"贝叶斯推断"过滤垃圾邮件 。因为 典型的垃圾邮件词汇在垃圾邮件中会以更高的频率出现 ,所以在做贝叶斯公式计算时,肯定会被识别出来。之后用更高频的15个垃圾词汇做联合概率计算,联合概率的结果超过90%将说明它是垃圾邮件。
不过这里还涉及到一个问题,就是单个关键词的概率(单个条件)无论如何再高,这封邮件仍然有可能不是垃圾邮件,所以在此处应用贝叶斯定理时,我们显然要用到多个条件,也就是计算这个概率:
Paul Graham 的做法是,选出邮件中 P(垃圾邮件|检测到“X”关键词) 更高的 15个词 ,计算它们的 联合概率 。(如果关键词是之一次出现,Paul Graham 就假定这个值等于 0.4 ,也即认为是negative normal)。
后续更新……
参考文章1:(知乎)小白之通俗易懂的贝叶斯定理(Bayes' Theorem)
参考文章2:()贝叶斯公式/贝叶斯法则/贝叶斯定理
本网站文章仅供交流学习 ,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除. 邮箱jdapk@qq.com