曲率公式(曲率公式是什么呢?)
曲率公式是什么?
曲率k=y''/[(1+(y')^2)^(3/2)],其中y',y"分别为函数y对x的一阶和二阶导数。
1、设曲线r(t) =(x(t),y(t)),曲率k=(x'y" - x"y')/((x')^2 + (y')^2)^(3/2)。
2、设曲线r(t)为三维向量函数,曲率k=|r'×r"|/(|r'|)^(3/2),|x|表示向量x的长度。
3、向量a,b的外积,若a=(a1,a2,a3),b=(b1,b2,b3),a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)。
意义
曲率是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意义。
本文考虑基本的情况,欧几里得空间中的曲线和曲面的曲率。一般意义下的曲率,请参照曲率张量。
在动力学中,一般的,一个物体相对于另一个物体做变速运动时也会产生曲率。这是关于时空扭曲造成的。结合广义相对论的等效原理,变速运动的物体可以看成处于引力场当中,因而产生曲率。
曲率公式是什么呢?
曲率k=y''/[(1+(y')^2)^(3/2)],其中y',y"分别为函数y对x的一阶和二阶导数。
1、设曲线r(t) =(x(t),y(t)),曲率k=(x'y" - x"y')/((x')^2 + (y')^2)^(3/2)。
2、设曲线r(t)为三维向量函数,曲率k=|r'×r"|/(|r'|)^(3/2),|x|表示向量x的长度。
3、向量a,b的外积,若a=(a1,a2,a3),b=(b1,b2,b3),a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)。
相关信息:
以平面曲线为例,做一圆通过平面曲线上的某一点A和邻近的另外两点B1,B2,当B1和B2无限趋近于A时,此圆的极限位置叫做曲线A点处的曲率圆。曲率圆的中心和半径分别称为曲线在A点的曲率中心(centre of curvature)和曲率半径(radius of curvature)。
圆弧的曲率半径,就是以这段圆弧为一个圆的一部分时,所成的圆的半径。 曲率半径越大,圆弧越平缓,曲率半径越小,圆弧越陡。曲率半径的倒数就是曲率。曲率 k = (转过的角度/对应的弧长)。当角度和弧长同时趋近于0时,就是关于任意形状的光滑曲线的曲率的标准定义。而对于圆,曲率不随位置变化。
曲率计算公式是什么?
曲线上某点的曲率半径是该点的密切圆的半径,在limΔs→0ΔαΔs=dαdslimΔs→0?ΔαΔs=dαds存在的条件下,k=∣∣dαds∣∣k=|dαds|。
设曲线的方程为y=f(x),且f(x)具有二阶导数。因为tanα = y’(设-ππ/2<α<ππ/2),所以
a=arctany’
dαdx=(arctany′)′dαdx=(arctany′)′
dα=(arctany′)′dx=y′′1+y′2dx
dα=(arctan?y′)′dx=y″1+y′2dx
或者
sec2αdα=y''dx,
dα=y′′sec2αdx=y′′1+tan2αdx=y′′1+y′2dxdα=y″sec2αdx=y″1+tan2αdx=y″1+y′2dx
3. 因为 ds=1+y′2??????√dxds=1+y′2dx(密切圆面积求导),从而得到曲率公式k=f′′[1+(f′)2]32k=f″[1+(f′)2]32。
?
本网站文章仅供交流学习 ,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除. 邮箱jdapk@qq.com