有理数概念(有理数的概念是什么)
有理数的定义是什么
有理数为整数(正整数、0、负整数)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
扩展资料
有理数的运算律(a、b、c等都表示任意的有理数):
1、加法的交换律:a+b=b+a。
有理数的概念是什么
有理数的概念是指有理数的分类
有理数包括整数和分数两大类(有限小数和无限循环小数都可以化成分数,属于分数)
什么是有理数?
根据数学书本定义:整数和分数统称为有理数。
①有理数主要是和无理数对应的,无理数是无限不循环小数,比如:5.121231234......,有很多根式也是无理数,比如√2、√3、√17......,但不是所有的根式都是无理数,比如√4、√81......
②有理数一定是有限的,或者是无限循环的,注意:循环两个字。
③易混淆的概念:小数一定是有理数,这是错误的。因为小数分为:有限小数、无限循环小数、无限不循环小数。而其中的无限不循环小数就是无理数。所以,一定不能说小数就是有理数!
④所有的有理数一定能转化成分数形式,即下图形式:
有理数的概念是什么
有理数的概念包含有理数分类的原则和 *** ,相反数、数轴、绝对值的概念和特点。
1、有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数。“分类”的原则:(1)相称(不重、不漏);(2)有标准。
2、非负数:正数与零的统称。
3、相反数:
(1)定义:如果两个数的和为0,那么这两个数互为相反数。
(2)求相反数的公式:a的相反数为-a。
(3)性质:①a≠0时,a≠-a;
②a与-a在数轴上的位置关于原点对称;
③两个相反数的和为0,商为-1。
4、数轴:
定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴。
作用:(1)直观地比较实数的大小;
(2)明确体现绝对值意义;
(3)所有的有理数可以在数轴上表示出来,所有的无理数如都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。
5、绝对值:(1)代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。
(2)几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
有理数的定义是什么?
数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b,故又称作分数
0也是有理数
有理数是整数和分数的 *** ,整数也可看做是分母为一的分数
x0a有理数的小数部分是有限或为无限循环的数
不是有理数的实数遂称为无理数,即无理数的小数部分是无限不循环的数
x0a有理数集可用大写黑正体符号Q代表
但Q并不表示有理数,有理数集与有理数是两个不同的概念
有理数集是元素为全体有理数的 *** ,而有理数则为有理数集中的所有元素
x0a整数可以看作分母为1的分数
正整数、0、负整数、正分数、负分数、循环小数都可以写成分数的形式,这样的数称为有理数
什么叫有理数 有理数的定义
有理数的定义我已经为大家找来了,我还为大家带来了其他内容,快来了解一下吧。
有理数的定义
有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。
有理数的简介与有理数相对的无理数,有时候也被我们直接叫做“无限不循环小数”,所谓的“无限不循环小数”指的就是,这种小数的小数点之后的数字是无限且不会产生循环的数。这种“无限不循坏小数”,即无理数,它是无法用分数形式来表示的。
作为“数与代数”领域中重要内容之一的有理数,在我们现如今的世纪生活当中,其实是有着非常广泛的运用的。有理数这一数学概念起源于西方,在数学当中,我们通常会使用大写的字母Q来代表有理数的 *** 。
与无理数的区别有理数是整数和分数的统称,而无理数是无限不循环小数。有理数的性质是一个整数a和一个正整数b的比,无理数的性质是由整数的比率或分数构成的数字。有理数集是整数集的扩张,而无理数是指实数范围内,不能表示成两个整数之比的数。
以上内容就是我为大家找来的有理数相关内容,希望可以帮助到大家。
本网站文章仅供交流学习 ,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除. 邮箱jdapk@qq.com