点到平面的距离公式(点到平面的距离公式是什么?)
点到平面距离是什么?
点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。
点到平面的距离公式:d=|Ax0+By0+Cz0+D|/√(A2+B2+C2)。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。
确定一个点的射影(如垂足)位置的 *** (分情况):
1、斜线上任意一点在平面上的射影必在斜线在平面的射影上;
2、若一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角平分线上;
3、若一条直线与一个角的两边夹角相等,那么这一条直线在平面上的射影在这个角平分线上;
4、两个平面相互垂直,一个平面上的点在另一个平面上的射影必在这两个平面的交线上;
5、若三棱锥的侧棱相等或侧棱与底面所成角相等,那么顶点在底面上的射影是底面三角形的外心;
6、若三棱锥顶点到底面各边距离相等或侧面与底面所成角相等,那么顶点在底面上的射影是底面三角形的内心(或旁心);
7、若三棱锥的侧棱相互垂直或各组对棱相互垂直,那么顶点在底面上的射影是底面三角形的垂心。
点到平面的距离公式是什么?
空间点到平面的距离公式推导:
1、设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。
距离d是向量QP在法向量n上投影的绝对值,即
d=|PijQP|=||QP|*cos|=||n|*|QP|*cos|/|n|
==|QP·n|/|n|。
2、设直线的方向向量是s,Q是这直线上任意一点,则空间点P转这直线的距离:d=|QP×s|/|s|,这里QP表示以Q为起点、P为终点的向量。距离d是以向量QP、向量s为邻边的平行四边形s边上的高,所以
d=|QP|*sin=/|s|=|QP×s|/|s|。
两平行线之间的距离公式:
设两条直线方程为。
Ax+By+C1=0。
Ax+By+C2=0。
则其距离公式为|C1-C2|/√(A2+B2)。
推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Aa+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为。
d=|Aa+Bb+C2|/√(A2+B2)。
=|-C1+C2|/√(A2+B2)。
=|C1-C2|/√(A2+B2)。
点到平面的距离公式
点到平面的距离公式:Ax+By+Cz+D=0。平面,是指面上任意两点的连线整个落在此面上,一种二维零曲率广延,这样一种面,它与同它相似的面的任何交线是一条直线。是由显示生活中(例如镜面、平静的水面等)的实物抽象出来的数学概念,但又与这些实物有根本的区别,既具有无限延展性(也就是说平面没有边界),又没有大小、宽窄、薄厚之分,平面的这种性质与直线的无限延展性又是相通的。
严格来说,距离指同一时间下,空间两点之间的空间最短连线长。该最短连线的性质取决于距离所在的空间性质,在经典物理中的平直空间里是直线,但在弯曲空间里则可以是曲线。
本网站文章仅供交流学习 ,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除. 邮箱jdapk@qq.com